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Example 1: Nitrogen data in Chesapeake Bay, Maryland
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Example 2: Weed Data in Bjertorp farm, Sweden
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Geostatistical Data

Measurements or observations from a spatially varying phe-
nomena in D (the domain of interest), D C R?

Measurements or observations from the graph of unknown
function

Each datum is associated with a subset of D
(a point or a larger set)



Some Geostatistical Problems

Spatial estimation of pollution in air, water or soil
(e.g. ozone, radon, SO»)

Determination of ‘hot spots’
Estimation of spatial averages

Ecological monitoring
(e.g. detecting decline of a species)

Detection of temporal or spatial trends
(e.g. global warming)



Main Features of Spatial Data

Can be discrete or continuous. Most often non-negative

Each datum has associated a ‘unit’ of space (support)
> Rain measured by a tipping bucket (point support)
> Rain ‘measured’ by a radar (areal support)

Stochastically dependent: Observations measured at nearby
locations tend to be more alike than observations measured
at far away locations

Often the variable of interest is not directly measured, but
only a surrogate (an inverse problem)



Spatial Prediction/Interpolation Problem

Variable of interest varies spatially over a certain region of the
plane according to an unknown function z(s) : D C R? - R

Variable measured at finite set of locations, si1,...,sp € D
Data vector is z = (2(s1),...,2(sn))

Other related spatial variables may also be available
(i.e. covariates)

Goal: make statistical inference about zo, = (2(sp1),---,2(Sor))
where sg1,...,80r € D ate locations with no measurements
For every sp; we would like to compute (2(sg;),5(s0;))



Random Fields/Spatial Processes

A random field on the region D C R?, {Z(s) : s € D}, is a
collection of random variables indexed by the elements of D
(often an infinite set)

The stochastic approach to the solution of spatial predic-
tion/interpolation problems starts with the assumption that
the graph of the unknown function, {(s,z2(s)) : s € D} is a
realization of a random field




Basic Components of a Random Field

Mean function: u(s) = E{Z(s)} (spatial trend)

Covariance function: C(s,u) = cov{Z(s), Z(u)}
(spatial similarity)

From these can compute variance function ¢2(s) = var{Z(s)}
( = C(s,8)) and correlation function

C(s,u)

Ksw =50

Closely related to C(s,u) is the semivariogram function
(spatial dissimilarity)

%var{Z(s) _ Z(w)}

v(s,u)

_ %[02@ +02(u) — 2C (s, u)]



Mean Function

Any function p: D — R can be the mean function of a random
field. Typical examples:

B1 (constant)
B11p,(s) + B21p,(s); D =D1UDy, DiNDy=1
B1+ Box+ B3y (s = (z,y))

B1+ B>X(s); X(.) a related process

All of the above are examples of linear mean functions

p
u(s) = > fi(s)B;

7=1



Covariance Function

On the other hand, not any function C : D x D — R can be a
covariance function of a random field.

Fact. C(s,u) is the covariance function of some random
field if and only if it is symmetric (C(s,u) = C(u,s)) and
positive semi-definite, meaning that

VmeN, s1,...,sm €D and a1,...,am € R:

™m
i=1j=

aiajC’(si, S]) > 0
1



Stationarity (Invariance)

Z(.) is strictly stationary if Vm €N, s1,...,8m € D, and h € R?

(Z(s1), ..., Z(sm)) = (Z(s1 4+ h), ..., Z(sm + h))

Z(.) is weakly (2nd order) stationary if

u(s)=p and C(s,u) =C(s—u)

in which case C(s,u) = 062K (s — u)

Z(.) is intrinsically stationary if

p(s) =p and  y(s,u) =7(s —u)

A covariance function is isotropic if C(s,u) = C(||s — u||)




Basic Covariance Models

For isotropic covariance functions C(s,s) = o2 (constant) and
C(s,u) = 02K (d) where d = ||s — u
A few examples:

Spherical Model

3
3 d :
1-5 (q)y if0<d<6
0, if d> 04

, 61 >0

A~
S
~
+
N~

K3 (d) =

Power Exponential

KgE(d) = exp ( — (i)%); 01 > 0, 0> € (0,2]
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Specifying Geostatistical Models

Complete Specification: Family of finite-dimensional distributions

Fsi...om(@1,...,2n) = P{Z(s1) <z1,...,Z(5m) < zm}
VmeNand s1,...,sm € D.

A random field is said to be Gaussian if all members of the
above family if distributions are multivariate normal

Gaussian random fields are completely specified by their
mean and covariance functions

For Gaussian random fields, strong and weak stationarity
are the same



2nd Order Random Field Specification

Let {Z(s) : s € D} be the random field of interest, with

p
> Bifi(s)

j=1
0'2K19(S, u) (=dC(s,u))

E{Z(s)}

cov{Z(s), Z(u)}

f(s) = (f1(s),..., fp(s)) location-dependent covariates
B = (B1,-..,8p) unknown regression parameters

02 = var{Z(s)}

Ky(s,u) correlation function on R2

Y correlation parameters controlling geometric and other
features of random field (e.g. differentiability).



Spatial Prediction/Interpolation
Suppose want to predict Z(sg), sg € D unsampled location

The kriging predictor is the one that minimizes

MSPE(Z(sg)) = E{(Z(sg) — Z(SO)>2}

over the class of linear unbiased predictors

n
Z(s0) = Y XNi(s0)Z(s;)
i=1
that are unbiased

E{Z(s0)} = E{Z(s0)}

This is also know as the BLUP predictor



Spatial Prediction/Interpolation (cont.)

The optimal coefficients (weights) A(sg) = (A1(sg), ..., A\n(s0))
are obtained as the solution of the linear system of equations

{ 1120 (si85) — iy mifi(si) = C(so,8) ; i=1,...,n
> Mifi(si) = fi(so0) j=1,...,p
An uncertainty measure is
52(sg) = MSPE(Z%(sp))
n p
C(s0,80) — > XjC(so,8;) + > m;f(s;)

=1 =1

Repeat for many sg € D to get estimate of graph of z(s)



Spatial Prediction/Interpolation (cont.)
When the random field is (approximately) Gaussian:
ZX (sg) agrees with best unbiased predictor

A nominal 95% prediction interval for Z(sg) is

725 (sp) + 1.96 - 5(sp)

T hese classical methods are implemented in the R package
geoR



Comments

The above kriging predictor is an ‘interpolator’
75 (s:) = Z(s;) (and 5°(s;) = 0)
52(sg) does not depend (directly) on the data z
Data often contain measurement error
Zi,ObS:Z(Si)_I_eia i=1,...,n
€1,...,€n i.i.d with mean 0 and variance ¢2. In this case
> ZK(sg) is a ‘smoother’ rather than an interpolator
> ZK(sg) remains the same for sg # s;

> 62(sqg) increases



Example 1: Nitrogen in Chesapeake Bay (cont.)
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Exploratory Analysis (cont.)
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Proposed Model

Data: Zu,s = (Z1 0bss - - - » Z49,0bs), Where

Zi,obszz(si)‘l'ei; 1 =1,...,49

E{Z(s)} = p1+ by, s=(z,y)

0 d
2V . (@ — e
cov{Z(s),Z(u)} = o dsm(@), d=|s — u|
€1,...,€n represent “measurement errors” (i.i.d.) with mean

0 and variance o2

Unknown parameters: 1 = (81, 82,0°,02,0)



Hot Spot Estimation

Based on scientific and/or regulatory considerations define
“hot spots” as

H={seD:Z(s)>cy(s)}

for some threshold function c,(s)

Estimate H by

H={seD:P(Z(s) > cy(s) | zops) > p}

with p given



Estimated Maps
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Detecting Hot Spots
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Non-Gaussian Data
Many geostatistical datasets are markedly non-Gaussian:
Data with skewed distributions and/or heavy tails
Binary data (e.g. presence/absence data)

Count data



Example 2: Weed Data in Bjertorp farm, Sweden
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Description of Data and Process

{A(s) : s € D} positive random field describing variation of
quantity of interest; not observable

To learn about A(-) spatial count variables Zq,...,7Z, are
collected having mean values related to A(+)

For weed data:
A(s) = intensity of weed occurrence at s
Z; = number of weeds observed within a rectangle of area ¢t;
centered at location s;

The main goal is prediction of A(-) based on the data
z = (Z1,...,Zn) and the covariate information (if available).



Poisson Kriging Model
Data: Z4,..., 4, are conditionally independent given
A= (A(s1),...,A(spn)), and
E{ZZ ’ A}:var{Zi | A}=ti/\(si), 1=1,....n
with t; > 0 known representing ‘sampling effort” at s;
Latent process: A(s) = u(s)e(s), with u(s) > 0 spatial
trend and {e(s) : s € D} a positive random field with

E{e(s)} =1 and cov{e(s),e(u)} = Ce(s—u)

To complete model specification, assume
1(s) = exp(B'f(s))

Ce(s —u) = exp(Cs(s —u)) — 1

with Cs(s —u) a standard covariance function



Second-order Structure

LLatent process:

E{A()} = u(s) , Cov{A(s), AQw)} = p(s)p(u)Ce(s — u)

Data:
E{Z;} = ti
cov{Z;, Z;} = titjuip;Ce(s;—s5),  i7F]
1 1
Evar{Zi — Zj}y = titjuipve(s; —sj) + E(tiﬂi + tju; 4+ o2 [tipi — tj,uj]2>

with u; = p(s;) and o2 = C.(0)



Residuals

From trend estimates compute ‘residuals’ in the form of ratios

Z.
R; = —-

—, r1=1,....n
Lifi

Treating trend estimates as known

1
Lifi

E{R}~1 , var{R}~o2+

and for any ¢ # j

tipi + tjuj)

1 1
—Vari{R;, — R;} = ve(s; —s; —(
5 {R; j} Ye(si ]) + 2\ it



Prediction of Latent Process

The Poisson kriging predictor of A(sg) based on the residuals
IS the one that minimizes

MSPE(A(so)) = E{(A(so) — Alsp))2)

over the class of linear unbiased predictors

A(s0) = u(so) > Ai(so)R;
i=1

that are (approximately) unbiased

> Ailsg) =1
i=1



Prediction of Latent Process (cont.)

The optimal coefficients (weights) A(sg) = (A1(sg), ..., A\n(s0))
are obtained as the solution of the linear system of equations

A |
£ T Xim1 AiCe(si —s) —mo = Ce(sj —s0);  forj=1,...,n

=1 i =1

An uncertainty measure is
52(sg) = MSPE(A%(sp))

p2(s0) (2 = 3 AiCe(si — 50) +mo)
1=1

Poisson kriging predictor has the same drawbacks of the
(regular) kriging predictor, plus a new one
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