GEOSTATISTICAL ANALYSIS OF ENVIRONMENTAL DATA

Victor De Oliveira

Department of Management Science and Statistics
The University of Texas at San Antonio
San Antonio, TX
USA

victor.deoliveira@utsa.edu
http://faculty.business.utsa.edu/vdeolive

2012 San Antonio Simulation and Vizualization Symposium UTSA, November 13 2012

Example 1: Nitrogen data in Chesapeake Bay, Maryland

Example 2: Weed Data in Bjertorp farm, Sweden

Geostatistical Data

- Measurements or observations from a spatially varying phenomena in D (the domain of interest), $D \subset \mathbb{R}^2$
- Measurements or observations from the graph of unknown function
- Each datum is associated with a subset of D (a point or a larger set)

Some Geostatistical Problems

- Spatial estimation of pollution in air, water or soil
 (e.g. ozone, radon, SO₂)
- Determination of 'hot spots'
- Estimation of spatial averages
- Ecological monitoring

 (e.g. detecting decline of a species)
- Detection of temporal or spatial trends

 (e.g. global warming)

Main Features of Spatial Data

- Can be discrete or continuous. Most often non-negative
- Each datum has associated a 'unit' of space (support)
- Stochastically dependent: Observations measured at nearby locations tend to be more alike than observations measured at far away locations
- Often the variable of interest is not directly measured, but only a surrogate (an inverse problem)

Spatial Prediction/Interpolation Problem

Variable of interest varies spatially over a certain region of the plane according to an unknown function $z(s): D \subset \mathbb{R}^2 \to \mathbb{R}$

Variable measured at finite set of locations, $s_1, \ldots, s_n \in D$ Data vector is $\mathbf{z} = (z(s_1), \ldots, z(s_n))$

Other related spatial variables may also be available (i.e. covariates)

<u>Goal</u>: make statistical inference about $\mathbf{z}_o = (z(\mathbf{s}_{01}), \dots, z(\mathbf{s}_{0k}))$ where $\mathbf{s}_{01}, \dots, \mathbf{s}_{0k} \in D$ at locations with no measurements For every \mathbf{s}_{0j} we would like to compute $(\hat{z}(s_{0j}), \hat{\sigma}(s_{0j}))$

Random Fields/Spatial Processes

A <u>random field</u> on the region $D \subset \mathbb{R}^2$, $\{Z(s) : s \in D\}$, is a collection of random variables indexed by the elements of D (often an infinite set)

The <u>stochastic approach</u> to the solution of spatial prediction/interpolation problems starts with the assumption that the graph of the unknown function, $\{(s, z(s)) : s \in D\}$ is a realization of a random field

Basic Components of a Random Field

- Mean function: $\mu(s) = E\{Z(s)\}$ (spatial trend)
- Covariance function: $C(\mathbf{s}, \mathbf{u}) = \text{cov}\{Z(\mathbf{s}), Z(\mathbf{u})\}$ (spatial similarity)
- From these can compute variance function $\sigma^2(s) = \text{var}\{Z(s)\}\$ (= C(s,s)) and correlation function

$$K(\mathbf{s}, \mathbf{u}) = \frac{C(\mathbf{s}, \mathbf{u})}{\sigma(\mathbf{s})\sigma(\mathbf{u})}$$

• Closely related to $C(\mathbf{s}, \mathbf{u})$ is the semivariogram function (spatial dissimilarity)

$$\gamma(\mathbf{s}, \mathbf{u}) = \frac{1}{2} \text{var}\{Z(\mathbf{s}) - Z(\mathbf{u})\}$$
$$= \frac{1}{2} [\sigma^2(\mathbf{s}) + \sigma^2(\mathbf{u}) - 2C(\mathbf{s}, \mathbf{u})]$$

Mean Function

Any function $\mu:D\to\mathbb{R}$ can be the mean function of a random field. Typical examples:

- β_1 (constant)
- $\beta_1 \mathbf{1}_{D_1}(s) + \beta_2 \mathbf{1}_{D_2}(s); \quad D = D_1 \cup D_2, \ D_1 \cap D_2 = \emptyset$
- $\beta_1 + \beta_2 x + \beta_3 y$ (s = (x, y))
- $\beta_1 + \beta_2 X(s)$; X(.) a related process

All of the above are examples of linear mean functions

$$\mu(\mathbf{s}) = \sum_{j=1}^{p} f_j(\mathbf{s})\beta_j$$

Covariance Function

On the other hand, not any function $C: D \times D \to \mathbb{R}$ can be a covariance function of a random field.

Fact. $C(\mathbf{s}, \mathbf{u})$ is the covariance function of some random field if and only if it is symmetric $(C(\mathbf{s}, \mathbf{u}) = C(\mathbf{u}, \mathbf{s}))$ and positive semi-definite, meaning that

 $\forall m \in N$, $\mathbf{s}_1, \ldots, \mathbf{s}_m \in D$ and $a_1, \ldots, a_m \in \mathbb{R}$:

$$\sum_{i=1}^{m} \sum_{j=1}^{m} a_i a_j C(\mathbf{s}_i, \mathbf{s}_j) \ge 0$$

Stationarity (Invariance)

Z(.) is strictly stationary if $\forall m \in \mathbb{N}, s_1, \ldots, s_m \in D$, and $\mathbf{h} \in \mathbb{R}^2$ $(Z(\mathbf{s}_1), \ldots, Z(\mathbf{s}_m)) \stackrel{\mathsf{d}}{=} (Z(\mathbf{s}_1 + \mathbf{h}), \ldots, Z(\mathbf{s}_m + \mathbf{h}))$

Z(.) is weakly (2nd order) stationary if

$$\mu(\mathbf{s}) = \mu$$
 and $C(\mathbf{s}, \mathbf{u}) = \tilde{C}(\mathbf{s} - \mathbf{u})$

in which case $C(\mathbf{s}, \mathbf{u}) = \sigma^2 \tilde{K}(\mathbf{s} - \mathbf{u})$

Z(.) is intrinsically stationary if

$$\mu(s) = \mu$$
 and $\gamma(s, u) = \tilde{\gamma}(s - u)$

A covariance function is isotropic if $C(\mathbf{s}, \mathbf{u}) = \bar{C}(\|\mathbf{s} - \mathbf{u}\|)$

Basic Covariance Models

For isotropic covariance functions $C(\mathbf{s}, \mathbf{s}) = \sigma^2$ (constant) and $C(\mathbf{s}, \mathbf{u}) = \sigma^2 K(d)$ where $d = ||\mathbf{s} - \mathbf{u}||$ A few examples:

Spherical Model

$$K_{\vartheta}^S(d) = \begin{cases} 1 - \frac{3}{2} \left(\frac{d}{\theta_1}\right) + \frac{1}{2} \left(\frac{d}{\theta_1}\right)^3, & \text{if } 0 \le d \le \theta_1 \\ 0, & \text{if } d > \theta_1 \end{cases}; \quad \theta_1 > 0$$

Power Exponential

$$K_{\vartheta}^{PE}(d) = \exp\left(-\left(\frac{d}{\theta_1}\right)^{\theta_2}\right); \qquad \theta_1 > 0, \ \theta_2 \in (0, 2]$$

Wave Effect

$$K_{\vartheta}^{WE}(d) = \frac{\theta_1}{d} \sin\left(\frac{d}{\theta_1}\right); \qquad \theta_1 > 0.$$

Spherical

Power Exponential

Power Exponential (cont.)

Wave Effect

Specifying Geostatistical Models

Complete Specification: Family of <u>finite-dimensional distributions</u>

$$F_{\mathbf{s}_1,\dots,\mathbf{s}_m}(x_1,\dots,x_n) = P\{Z(\mathbf{s}_1) \le x_1,\dots,Z(\mathbf{s}_m) \le x_m\}$$

$$\forall m \in \mathbb{N} \text{ and } \mathbf{s}_1,\dots,\mathbf{s}_m \in D.$$

- A random field is said to be <u>Gaussian</u> if all members of the above family if distributions are multivariate normal
- Gaussian random fields are completely specified by their mean and covariance functions
- For Gaussian random fields, strong and weak stationarity are the same

2nd Order Random Field Specification

Let $\{Z(s): s \in D\}$ be the random field of interest, with

$$E\{Z(\mathbf{s})\} = \sum_{j=1}^{p} \beta_j f_j(\mathbf{s})$$
$$\operatorname{cov}\{Z(\mathbf{s}), Z(\mathbf{u})\} = \sigma^2 K_{\vartheta}(\mathbf{s}, \mathbf{u}) \ (= C(\mathbf{s}, \mathbf{u}))$$

- $f(s) = (f_1(s), \dots, f_p(s))$ location-dependent covariates
- $\beta = (\beta_1, \dots, \beta_p)$ unknown regression parameters
- $\sigma^2 = \text{var}\{Z(\mathbf{s})\}$
- $K_{\vartheta}(\mathbf{s}, \mathbf{u})$ correlation function on \mathbb{R}^2
- ϑ correlation parameters controlling geometric and other features of random field (e.g. differentiability).

Spatial Prediction/Interpolation

- Suppose want to predict $Z(s_0)$, $s_0 \in D$ unsampled location
- The kriging predictor is the one that minimizes

$$MSPE(\hat{Z}(s_0)) = E\{(Z(s_0) - \hat{Z}(s_0))^2\}$$

over the class of linear unbiased predictors

$$\widehat{Z}(\mathbf{s}_0) = \sum_{i=1}^n \lambda_i(\mathbf{s}_0) Z(\mathbf{s}_i)$$

that are unbiased

$$E\{\widehat{Z}(\mathbf{s}_0)\} = E\{Z(\mathbf{s}_0)\}$$

This is also know as the **BLUP** predictor

Spatial Prediction/Interpolation (cont.)

• The optimal coefficients (weights) $\lambda(s_0) = (\lambda_1(s_0), \dots, \lambda_n(s_0))$ are obtained as the solution of the linear system of equations

$$\begin{cases} \sum_{j=1}^{n} \lambda_{j} C(\mathbf{s}_{i}, \mathbf{s}_{j}) - \sum_{j=1}^{p} m_{j} f_{j}(\mathbf{s}_{i}) &= C(\mathbf{s}_{0}, \mathbf{s}_{i}) ; \quad i = 1, \dots, n \\ \sum_{i=1}^{n} \lambda_{i} f_{j}(\mathbf{s}_{i}) &= f_{j}(\mathbf{s}_{0}) ; \quad j = 1, \dots, p \end{cases}$$

An uncertainty measure is

$$\widehat{\sigma}^{2}(\mathbf{s}_{0}) = \mathsf{MSPE}(\widehat{Z}^{K}(\mathbf{s}_{0}))$$

$$= C(\mathbf{s}_{0}, \mathbf{s}_{0}) - \sum_{j=1}^{n} \lambda_{j} C(\mathbf{s}_{0}, \mathbf{s}_{j}) + \sum_{j=1}^{p} m_{j} f(\mathbf{s}_{j})$$

• Repeat for many $s_0 \in D$ to get estimate of graph of z(s)

Spatial Prediction/Interpolation (cont.)

When the random field is (approximately) Gaussian:

- ullet $\hat{Z}^K(\mathbf{s}_0)$ agrees with best unbiased predictor
- A nominal 95% prediction interval for $Z(\mathbf{s}_0)$ is

$$\widehat{Z}^K(\mathbf{s}_0) \pm 1.96 \cdot \widehat{\sigma}(\mathbf{s}_0)$$

• These classical methods are implemented in the R package geoR

Comments

The above kriging predictor is an 'interpolator'

$$\widehat{Z}^K(\mathbf{s}_i) = Z(\mathbf{s}_i)$$
 (and $\widehat{\sigma}^2(\mathbf{s}_i) = 0$)

- $\hat{\sigma}^2(s_0)$ does not depend (directly) on the data z
- Data often contain measurement error

$$Z_{i,\text{obs}} = Z(\mathbf{s}_i) + \epsilon_i, \qquad i = 1, \dots, n$$

 $\epsilon_1, \ldots, \epsilon_n$ i.i.d with mean 0 and variance σ_{ϵ}^2 . In this case

- \rhd $\widehat{\mathcal{Z}}^K(\mathbf{s}_0)$ is a 'smoother' rather than an interpolator
- $\triangleright \hat{Z}^K(\mathbf{s}_0)$ remains the same for $\mathbf{s}_0 \neq \mathbf{s}_i$
- $\triangleright \hat{\sigma}^2(s_0)$ increases

Example 1: Nitrogen in Chesapeake Bay (cont.)

Exploratory Analysis

Exploratory Analysis (cont.)

Proposed Model

• Data: $\mathbf{Z}_{obs} = (Z_{1,obs}, \dots, Z_{49,obs})$, where

$$Z_{i,obs} = Z(\mathbf{s}_i) + \epsilon_i; \quad i = 1, \dots, 49$$

$$E\{Z(\mathbf{s})\} = \beta_1 + \beta_2 y, \quad \mathbf{s} = (x, y)$$

$$\mathsf{cov}\{Z(\mathbf{s}), Z(\mathbf{u})\} = \sigma^2 \frac{\theta}{d} \mathsf{sin}\left(\frac{d}{\theta}\right), \quad d = \|\mathbf{s} - \mathbf{u}\|$$

 $\epsilon_1,\dots,\epsilon_n$ represent "measurement errors" (i.i.d.) with mean 0 and variance σ^2_ϵ

• Unknown parameters: $\eta = (\beta_1, \beta_2, \sigma^2, \sigma_{\epsilon}^2, \theta)$

Hot Spot Estimation

Based on scientific and/or regulatory considerations define "hot spots" as

$$H = \{ \mathbf{s} \in D : Z(\mathbf{s}) > c_{\eta}(\mathbf{s}) \}$$

for some threshold function $c_{\eta}(\mathbf{s})$

Estimate H by

$$\widehat{H} = \{ \mathbf{s} \in D : P(Z(\mathbf{s}) > c_{\eta}(\mathbf{s}) \mid \mathbf{z}_{\mathsf{obs}}) > p \}$$

with p given

Estimated Maps

Maps of estimated nitrogen concentration (left) and uncertainty (right)

Detecting Hot Spots

Maps of estimated $P\{Z(\mathbf{s}) > 0.75 \mid \mathbf{z}_{obs}\}$ (left) and $P\{Z(\mathbf{s}) > \mu(\mathbf{s}) + 0.05 \mid \mathbf{z}_{obs}\}$ (right)

Non-Gaussian Data

Many geostatistical datasets are markedly non-Gaussian:

Data with skewed distributions and/or heavy tails

Binary data (e.g. presence/absence data)

Count data

Example 2: Weed Data in Bjertorp farm, Sweden

Description of Data and Process

- $\{\Lambda(s) : s \in D\}$ positive random field describing variation of quantity of interest; not observable
- To learn about $\Lambda(\cdot)$ spatial count variables Z_1, \ldots, Z_n are collected having mean values related to $\Lambda(\cdot)$
- For weed data:
- $\Lambda(\mathbf{s})=$ intensity of weed occurrence at \mathbf{s} $Z_i=$ number of weeds observed within a rectangle of area t_i centered at location \mathbf{s}_i
- The main goal is prediction of $\Lambda(\cdot)$ based on the data $\mathbf{z} = (Z_1, \dots, Z_n)$ and the covariate information (if available).

Poisson Kriging Model

(1) Data: Z_1, \ldots, Z_n are conditionally independent given $\Lambda = (\Lambda(s_1), \ldots, \Lambda(s_n))$, and

$$\mathsf{E}\{Z_i \mid \Lambda\} = \mathsf{var}\{Z_i \mid \Lambda\} = t_i \Lambda(\mathbf{s}_i), \qquad i = 1, \dots, n$$

with $t_i > 0$ known representing "sampling effort" at \mathbf{s}_i

(2) Latent process: $\Lambda(s) = \mu(s)\epsilon(s)$, with $\mu(s) > 0$ spatial trend and $\{\epsilon(s) : s \in D\}$ a positive random field with

$$\mathsf{E}\{\epsilon(\mathbf{s})\} = 1$$
 and $\mathsf{cov}\{\epsilon(\mathbf{s}), \epsilon(\mathbf{u})\} = C_{\epsilon}(\mathbf{s} - \mathbf{u})$

To complete model specification, assume

$$\mu(\mathbf{s}) = \exp(\beta' \mathbf{f}(\mathbf{s}))$$

$$C_{\epsilon}(\mathbf{s} - \mathbf{u}) = \exp(C_{\delta}(\mathbf{s} - \mathbf{u})) - 1$$

with $C_{\delta}(\mathbf{s}-\mathbf{u})$ a standard covariance function

Second-order Structure

Latent process:

$$E\{\Lambda(s)\} = \mu(s)$$
 , $COV\{\Lambda(s), \Lambda(u)\} = \mu(s)\mu(u)C_{\epsilon}(s-u)$

Data:

$$\begin{aligned} & & \quad \mathsf{E}\{Z_i\} &= t_i \mu_i \\ & \quad \mathsf{cov}\{Z_i, Z_j\} &= t_i t_j \mu_i \mu_j C_\epsilon(\mathbf{s}_i - \mathbf{s}_j), \quad i \neq j \\ & \quad \frac{1}{2} \mathsf{var}\{Z_i - Z_j\} &= t_i t_j \mu_i \mu_j \gamma_\epsilon(\mathbf{s}_i - \mathbf{s}_j) + \frac{1}{2} \Big(t_i \mu_i + t_j \mu_j + \sigma_\epsilon^2 [t_i \mu_i - t_j \mu_j]^2 \Big) \end{aligned}$$

with
$$\mu_i = \mu(\mathbf{s}_i)$$
 and $\sigma_{\epsilon}^2 = C_{\epsilon}(\mathbf{0})$

Residuals

From trend estimates compute 'residuals' in the form of ratios

$$R_i = \frac{Z_i}{t_i \hat{\mu}_i}, \qquad i = 1, \dots, n$$

Treating trend estimates as known

$$\mathsf{E}\{R_i\} pprox 1 \quad , \quad \mathsf{var}\{R_i\} pprox \sigma_\epsilon^2 + \frac{1}{t_i \mu_i}$$

and for any $i \neq j$

$$\frac{1}{2} \text{var}\{R_i - R_j\} \approx \gamma_{\epsilon}(\mathbf{s}_i - \mathbf{s}_j) + \frac{1}{2} \left(\frac{t_i \mu_i + t_j \mu_j}{t_i t_j \mu_i \mu_j}\right)$$

Prediction of Latent Process

The Poisson kriging predictor of $\Lambda(\mathbf{s}_0)$ based on the residuals is the one that minimizes

$$MSPE(\hat{\Lambda}(s_0)) = E\{(\Lambda(s_0) - \hat{\Lambda}(s_0))^2\}$$

over the class of linear unbiased predictors

$$\widehat{\Lambda}(\mathbf{s}_0) = \mu(\mathbf{s}_0) \sum_{i=1}^n \lambda_i(\mathbf{s}_0) R_i$$

that are (approximately) unbiased

$$\sum_{i=1}^{n} \lambda_i(\mathbf{s}_0) = 1$$

Prediction of Latent Process (cont.)

• The optimal coefficients (weights) $\lambda(s_0) = (\lambda_1(s_0), \dots, \lambda_n(s_0))$ are obtained as the solution of the linear system of equations

$$\begin{cases} \frac{\lambda_j}{t_j \mu_j} + \sum_{i=1}^n \lambda_i C_{\epsilon}(\mathbf{s}_i - \mathbf{s}_j) - m_0 = C_{\epsilon}(\mathbf{s}_j - \mathbf{s}_0); & \text{for } j = 1, \dots, n \\ \sum_{i=1}^n \lambda_i = 1 \end{cases}$$

An uncertainty measure is

$$\hat{\sigma}^{2}(\mathbf{s}_{0}) = \mathsf{MSPE}(\hat{\Lambda}^{K}(\mathbf{s}_{0}))$$

$$= \mu^{2}(\mathbf{s}_{0}) \left(\sigma_{\epsilon}^{2} - \sum_{i=1}^{n} \lambda_{i} C_{\epsilon}(\mathbf{s}_{i} - \mathbf{s}_{0}) + m_{0} \right)$$

 Poisson kriging predictor has the same drawbacks of the (regular) kriging predictor, plus a new one

Predictive Inference from Weed Data

Maps of $\hat{\Lambda}^K(\mathbf{s}_0)$ (left) and $\hat{\sigma}(\mathbf{s}_0)$ (right)

THANKS FOR YOUR ATTENTION

victor.deoliveira@utsa.edu
http://faculty.business.utsa.edu/vdeolive