

Multi-Touch Screen

SDK Reference

PQ Multi-Touch SDK Reference

Revisions

v1.1 2009-06-16

v1.2 2009-07-22

 Attention that client of version 1.2 is not compatible with that of v1.1, you need to

recompile the applications. And the new client with version 1.2 require new multi-touch

server with version 1.10 at least.

v1.3 2010-08-04

Add two interfaces: SetRawDataResolution, SetOnGetDeviceInfo.

Modify the function “ConnectServer” to support specifying the server socket port.

Require multitouch platform v4.1004 or later.

v1.3.6 2010-08-16

 Fix bug that: the sample code demo may crash when invoking “DisconnectServer”.

V1.3.7 2012-08-01

 Fix bug that: the call back object of PFuncOnReceivePointFrame is wrong.

Contents

Flow Sheet

Functions

Struct Definitions

Macro Definitions

Sample Code

Flow Sheet

TCP Socket

PQLabs

MultiTouchPlatform

Running

Application based

on PQLabs SDK

Initialize(Set callback

functors of handling the

received data)

ConnnectServer

(SDK API)

SendRequest(S

DK API)

Callback

functions of

received data

data

PQLabs

SDK

Package

data

DisconnectServ

er(SDK API)

Clear something

SendThreshol

d(SDK API)

GetServerReso

lution(SDK

API)

SetRawdataRe

solution(SDK

API)

PFuncOnRec

eiveGesture(S

DK API)

PFuncOnRec

eivePointFra

me(SDK

API)

PFuncOnRec

eiveError(SD

K API)

PFuncOnServ

erBreak(SDK

API)

Functions

 PQ Multi-Touch Platform support secondary development. The APIs below enable

developers to create custom touching solutions conveniently.

ConnectServer

int ConnectServer(

const char * ip = “127.0.0.1”,

int port = PQMT_DEFAULT_CLIENT_PORT

);

 Connect the multi-touch server.

Parameters:

 ip

The ip address of the multi-touch server, “127.0.0.1” as default this function will

connect to local machine.

port

 The port of the server. PQMT_DEFAULT_CLIENT_PORT for default.

Return Values:

 PQMTE_SUCCESS indicates connecting successfully, otherwise it will return a error

code, which equal to the windows socket error code, see Winsock Error Codes from

msdn.

Remarks:

 When connect server successfully, function will send a default request

RQST_RAWDATA_ALL.

Requirements:

See also:

 DisconnectServer, Client Request Type.

DisconnectServer

int DisconnectServer();

 Disconnect from the multi-touch server.

Return Values:

 PQMTE_SUCCESS indicates disconnecting successfully, otherwise it will return a

error code, which equal to the windows socket error code, see Winsock Error Codes from

msdn.

See also:

 ConnectServer.

SendRequest

int SendRequest(

const TouchClientRequest & request

);

 After connect the multi-touch server successfully, send your request to the server.

The request tell the server which service you’d like to enjoy.

Parameters:

 request

Request information to send to the server. See TouchClientRequest.

Return Values:

 PQMTE_SUCCESS indicates send successfully, otherwise it will return a error code,

which maybe the socket error code or the window error code, see Winsock Error Codes

from msdn.

Remarks:

 If you don’t send any request to the server, server will treat you as the default client

which sends a default request to server. You can send a combination of request type in a

request, such as RQST_RAWDATA_INSIDE | RQST_GESTURE_INSIDE. See

TouchClientRequest about the combination.

See also:

 ConnnectServer, TouchClientRequest.

SendThreshold

int SendThreshold(

int move_threshold

);

 Defaultly the server will send out the moving touch points to client with a tolerance so

that some “still” touch points, which is closed to its last move position, will be filtered. If you

need all the touch points or you want to filter more “still” touch points, you can send

specified move threshold to the server, the move threshold is in pixel.

Parameters:

 move_threshold

It is the move threshold that will filter some points not move(the move_dis < threshold),

it is in pixel(the pixel in the coordinate of server), 0 for highest sensitivity in server;

Return Values:

 PQMTE_SUCCESS indicates send successfully, otherwise it will return a error code,

which maybe the socket error code or the window error code, see Winsock Error Codes

from msdn.

Remarks:

 The send threshold can only work for RQST_RAWDATA_INSIDE request type;

See also:

 ConnnectServer, TouchClientRequest.

SetOnReceivePointFrame

PFuncOnReceiveData SetOnReceiveData(

PFuncOnReceivePointFrame pf_on_rcv_point_frame,

void * call_back_object

);

 Set the function that you want to execute while receiving the touch point frame.

Parameters:

 pfunc_on_rcv_point_frame

The function pointer you want to execute while receiving the touch points. See

PFuncOnReceivePointFrame.

call_back_object

The object passed to pfunc_on_receive_data, generally it is used for passing an

object pointer.

Return Values:

 The old functor.

See also:

 PFuncOnPointFrame.

SetOnReceiveGesture

PFuncOnReceiveData SetOnReceiveGesture(

PFuncOnReceiveGesture pf_on_rcv_gesture,

void * call_back_object

);

 Set the function that you want to execute while receiving the touch point frame.

Parameters:

 pfunc_on_rcv_gesture

The function pointer you want to execute while receiving the touch gesture. See

PFuncOnReceiveGesture.

call_back_object

A pointer passed to pfunc_on_receive_data, generally it is used for passing an

object pointer.

Return Values:

 The old functor.

See also:

 PFuncOnReceiveGesture

SetOnServerBreak

PFuncOnServerBreak SetOnServerBreak(

PFuncOnServerBreak pfunc_on_svr_break,

void * call_back_object

);

Set the function that you want to execute while receive the message that the server

interrupt the connection.

Parameters:

 pfunc_on_svr_break

The call back function pointer.

call_back_object

A pointer passed to pfunc_on_receive_data, generally it is used for passing an

object pointer.

Return Values:

 The old function pointer.

See also:

 PFuncOnServerBreak.

SetOnReceiveError

PFuncOnReceiveError SetOnReceiveError(

PFuncOnReceiveError pfunc_on_rcv_error,

void * call_back_object

);

Set the function that you want to execute while some errors occur during the receive

process.

Parameters:

 pfunc_on_rcv_error

The call back function pointer.

call_back_object

A pointer passed to pfunc_on_receive_data, generally it is used for passing an

object pointer.

Return Values:

 The old function pointer.

See also:

 PFuncOnReceiveError.

SetRawDataResolution

int SetRawDataResolution(

int max_x,

int max_y

);

 Set the resolution of the raw data(touch points). It’s the resolution that the received touch points of

this client based on.

Parameters:

 max_x

 resolution of the x axis.

max_y

 resolution of the y axis.

Return Values:

 PQMTE_SUCCESS for success, or windows socket error code for fail.

Requirements:

 The server should be at least PQ MultitouchPlatform v3.1004.

SetOnGetDeviceInfo

PFuncOnGetDeviceInfo

SetOnGetDeviceInfo(

 PFuncOnGetDeviceInfo pf_on_get_device_info,

 void * call_back_object

);

 The device information will be sent after the client SendRequest to server, or when the device plug

in/out. Set the function that you want to execute while the client receive the device information here.

Parameters:

 pf_on_get_device_info

 The call back function pointer.

call_back_object

A pointer passed to pfunc_on_get_device_info, generally it is used for passing

an object pointer.

Return Values:

 PQMTE_SUCCESS for success, or windows socket error code for fail.

Requirements:

 The server should be at least PQ MultitouchPlatform v3.1004.

See also:

 PFuncOnGetDeviceInfo.

GetServerResolution

int GetServerResolution(

PFuncOnGetServerResolution pFnCallback,

void * call_back_object

);

 Get the display resolution of multi-touch server. Generally it needn’t to get the

resolution information of server but when the client is working at another PC different with

server, the resolution is needed for the client calculating the point position and

width/height.

Parameters:

 pFnCallback

 The call back function pointer when receiving the resolution infomation.

 call_back_object

A pointer passed to pfunc_on_receive_data, generally it is used for passing an

object pointer.

Return Values:

 Name of the touch gesture.

See also:

PFuncOnGetServerResolution

GetGestureName

const char * GetGestureName(

const TouchGesture & tg

);

 Get the touch gesture name of the touch gesture.

Parameters:

 tg

 The touch gesture.

Return Values:

 Name of the touch gesture.

Remarks:

Requirements:

See also:

Struct Definitions

TouchPoint

Syntax:

struct TouchPoint

{

 unsigned short point_event;

 unsigned short id;

 int x;

 int y;

 unsigned short dx;

 unsigned short dy;

};

 The raw touch point received from the server.

DataMembers:

 point_event

Indicates current action or event of the touch point, It is one of the values in table:

TouchPoint Type.

 id

Use id to distinguish different points on the screen.

 x

Specifies the x-coordinate of the center position of the point. In pixels.

 y

Specifies the y-coordinate of the center position of the point. In pixels.

 dx

 Specifies the x-width of the touch point. In pixels.

 dy

 Specifies the y-width of the touch point. In pixels.

Remarks:

See also:

 TouchPoint Event Type

TouchGesture

Syntax:

struct TouchGesture

{

 // type

 unsigned short type;

 // param size

 unsigned short param_size;

 // params

 double params[MAX_TG_PARAM_SIZE];

};

DataMembers:

 type

Provides a code to distinguish different gestures. It is one of the values in table:

TouchGesture Type.

 param_size

 Specifies size of the params that the gesture contains.

 params

 Contains the values of the gesture params.

Remarks:

See also:

 TouchGesture Type

TouchClientRequest

Syntax:

struct TouchClientRequest

{

 // request type

 int type;

 // an sole id of your application, it’s reserved at present

 GUID app_id;

 // for RQST_TRANSLATOR_CONFIG, it is the name of gesture translator which will be queried

from the server configure tools; otherwise, it is a reserved param.

 char param[128];

};

 Contain the request information that you want to tell the server. It is send by the

function SendRequest.

DataMembers:

 type

Specifies what service you want the server to provide.It can be combination of

the values in table Client Request Type.

 app_id

An license key id of your application. You should send this key id to tell the server

activate the receive right of your application. It’s reserved at present.

 Param

If type is RQST_TRANSLATOR_CONFIG, it is the name of gesture translator

which will be queired from the server configure tools. Otherwise, it is reserved.

Remarks:

See also:

 SendRequest, Client Request Type.

TouchDeviceInfo

Syntax:

struct PQMT_CLIENT_API TouchDeviceInfo{

 int screen_width; //the physical touchable width of touch screen device

 int screen_height;//the physical touchable height of touch screen device

 char serial_number[128]; //the serial number of touch screen device

};

 Informaion of the touch device.

DataMembers:

 screen_width

The physical touchable width of the touch screen. In millimeter.

 screen_height

The physical touchable height of the touch screen. In millimeter.

 serial_number

 An unique id of the touch device.

See also:

 SetOnGetDeviceInfo.

Macro Definitions

Error Type

Type Descriptions

PQMTE_SUCCESS OK.

PQMTE_RCV_INVALIDATE_DATA the data received is invalidate,may be the

client receive the data from other

application but pq multi-touch server.

PQMTE_SERVER_VERSION_OLD the pq multi-touch server is too old for this

version of client.

Others Socket error code or windows error code.

TouchPoint Event Type

Type Descriptions

TP_DOWN It is the first time that the touch point occur.

It is called “down” event.

TP_MOVE The touch point is move on the screen after

“down”.

TP_UP The touch point leave the screen, called

“up” event.

TouchGesture Type

Remarks

 If the param value indicates coordinates, it is in pixels. All the parameters are positive.

Here, we take finger for example as the object that you use to touch the screen.

“Ditto” here means “ the same as above”.

Here, “finger down” always means “finger touch onto the screen”.

Type Descriptions Paras size Params

TG_TOUCH_START

Indicates that the first

touch come, you can

initialize something

here.

0

TG_DOWN
A single finger touch

on the screen.
2

The center position of the

touch finger.

Params[0]: x-coordinates

Params[1]: y-coordinates

TG_MOVE

The touch point is

moving after

TG_DOWN.

2 Ditto

TG_UP
The touch point will

leave the screen.
2 Ditto.

TG_CLICK
A single finger click

on the screen.
2 Ditto.

TG_DB_CLICK
A single finger double

click on the screen.
2 Ditto.

TG_BIG_DOWN

A single fist or

something with “big”

touch area touching

on the screen.

2 Ditto.

TG_BIG_MOVE

The fist is moving

after

TG_BIG_DOWN.

2 Ditto.

TG_BIG_UP
The touching fist will

leave the screen.
2 Ditto.

TG_MOVE_RIGHT

The single touching

finger move to right

with a distance.

2 Ditto.

TG_MOVE_UP Ditto. But move to up. 2 Ditto.

TG_MOVE_LEFT Ditto. But move to left. 2 Ditto.

TG_MOVE_DOWN
Ditto. But move to

down.
2 Ditto.

TG_SECOND_DOWN

After a single finger

touch down on the

screen, the second

finger comes and

touch on the screen.

4

(params[0],parmas[1])

indicate the center position

of the second finger,

params[0] is x-coordinate

and params[1] is y.

(params[2],params[3])

indicate the center position

of the first finger.

TG_SECOND_UP

The second finger will

leave the screen after

TG_SECOND_DOW

N.

4 Ditto.

TG_SECOND_CLICK
The second finger

click.
4 Ditto.

TG_SECOND_DB_CLI

CK

The second finger

double click.
4 Ditto.

TG_SPLIT_START

There are two fingers

on the screen and the

two fingers are

4

The params indicate the

positions of the two touching

finger. (params[0],

moving to contrary

direction. This

gesture indicates that

the split gesture

comes.

params[1]) for one and

(params[2], params[3]) for

the other.

TG_SPLIT_APART

The two split fingers

is split apart with their

distance increasing.

6

params[0] indicate the delta

distance in pixels. params[1]

indicate the ratio of delta

distance to the initial

distance of the two

fingers.(params[2],params[3

]) and (params[4],params[5])

is the positions of the two

points.

TG_SPLIT_CLOSE
Contrary to

TG_SPLIT_APART.
6 Ditto.

TG_SPLIT_END

The Split gesture will

end. The reason may

be one of the bellows:

1. one of the two

fingers touch up.

2. the two fingers

now are doing

some other

gestures, known

or unknown.

3. The third finger

have touched

down.

4
Same with

 TG_SPLIT_START.

TG_ROTATE_START

There are two fingers

touching the screen

and one is anchored

at the focus position

while the other is

rotating around the

focus point.

TG_ROTATE_START

indicates that the

rotate gesture is

coming.

4

Like that of the Split

Gesture, the 4 parameters

indicate the positions of the

two fingers. But here, the

first finger which indicated

by (params[0], params[1]) is

the anchor finger while the

second finger ,(params[2],

param[3]), is the round

finger.

TG_ROTATE_ANTICL

OCK

The rounding finger is

moving anticlockwise.
5

Params[0] indicates the

rotate angle in

radians.(params[1],params[

2]) and

(params[3],params[4])

indicate the positons of the

two touching

fingers.(params[1],params[2

]) is the anchor finger.

TG_ROTATE_CLOCK Contrary to above. 5 Ditto.

TG_ROTATE_END

The rotate gesture will

end. The reason may

be one of the bellows:

1. one the two

fingers touch up.

2. the two fingers

now are doing

some other

gestures, known

or unknown.

3. The third finger

have touched

down.

4
Same with

TG_ROTATE_START

TG_NEAR_PARREL_

DOWN

There are two fingers

touching on the

screen and they touch

the screen in the

same time and they

are in a short distance

to each other.

It is different from

TG_SECOND_DOW

N. The latter is that

the second finger is

down after a while,

short or long, since

the first finger

touching on the

screen.

6

(params[0],params[1])

indicate the middle position

of the two fingers.

(params[2],params[3])

indicate the first position of

the two fingers.

(params[4],params[5])

indicate the second position

of the two fingers.

TG_NEAR_PARREL_

MOVE

The two finger moves

and remains their

short distance.

6 Ditto.

TG_NEAR_PARREL_

UP

One of the two fingers

touch up or there

comes the third or

more fingers.

6 Ditto.

TG_NEAR_PARREL_

CLICK

Two fingers click in the

“same” time on the
2

(params[0],params[1])

indicate the middle position

screen and there the

TG_NEAR_PARREL_DO

WN and

TG_NERA_PRREL_UP

come before the click.

of the two fingers

TG_NEAR_PARREL_DOW

N.

TG_NEAR_PARREL_

DB_CLICK

Two

TG_NEAR_PARREL_CLI

CK come one by one in a

short time.

2 Ditto.

TG_NEAR_PARREL_

MOVE_RIGHT

The middle point of

the two fingers move

to right.

2 Ditto.

TG_NEAR_PARREL_

MOVE_UP
Ditto, but move to up. 2 Ditto.

TG_NEAR_PARREL_

MOVE_LEFT
Ditto, but move to left 2 Ditto.

TG_NEAR_PARREL_

MOVE_DOWN

Ditto, but move to

down.
2 Ditto.

TG_MULTI_DOWN

There are three or

more fingers touching

on the screen. Every

the first time there

comes more than two

fingers, there comes

TG_MULTI_DOWN.

6

(params[4], params[5])

indicates the center point of

those fingers.

TG_MULTI_MOVE

The center point of

those fingers is

moving.

6 Ditto.

TG_MULTI_UP

Some fingers touch

up and there are less

than three fingers left

on the screen.

6 Ditto.

TG_MULTI_MOVE_RI

GHT

The center point of

those fingers is

moving to right.

6 Ditto.

TG_MULTI_MOVE_UP Ditto, but move to up. 6 Ditto.

TG_MULTI_MOVE_LE

FT
Ditto, but move to left. 6 Ditto.

TG_MULTI_MOVE_D

OWN

Ditto, but move to

down.
6 Ditto.

TG_TOUCH_END

There are no fingers

touching the

screen.The touch

end. You can “clear”

0

here.

TG_NO_ACTION

It just a signal that the

gesture is not

implemented or

something else that

lead to the current

gesture not used.

What you need to do

for this signal is just

do nothing.

Client Request Type

Type value Description

RQST_RAWDATA_INSIDE_ONLY 0x0000 The Server will send the raw touch

points to this client application only

when the first finger is touching

down in the active rectangle of the

main window. This query is similar

with RQST_RAWDATA_INSIDE but

that it can not combine with other

request.

RQST_RAWDATA_INSIDE 0x0001 The Server will send the raw touch

points to this client application

when the first finger is touching

down in the active rectangle of the

main window.

RQST_RAWDATA_ALL 0x0002 The Server will send all the raw

touch points to this client

application when fingers touch the

screen.

RQST_GESTURE_INSIDE 0x0004 The Server will send the touch

gestures to this client application

when the first finger of the gesture

is touching down in the active

rectangle of the main window.

RQST_GESTURE_ALL 0x0008 The Server will send all the touch

gestures to this client application

when fingers touch the screen.

RQST_TRANSLATOR_CONFIG 0x0010 This request will tell the server to

translator the gestures to the

system input with the translators

whose name is the content of

“params”(data member of

TouchClientRequest) when

activating the client application. You

can get the names form the

MultiTouchServer Configuration

Tools. This request doesn’t tell the

server to send touch data to the

client application.

 Remarks

 All the requests can combine with others except RQST_RAWDATA_INSIDE_ONLY.

Function Pointers

PFuncOnReceivePointFrame

 Call back funciton pointer which defines the function that you want to call when the touch point

frame coming. The touch points unmoving won't be sent from the server for the sake of efficency. The

new touch point with its pointevent being TP_DOWN and the leaving touch point with its pointevent being

TP_UP will be always sent from server.

Params:

 frame_id : a unique id for the current frame;

 time_stamp : the time flag when the frame generated, it is in milli-seconds;

 moving_point_count : the count of the moving or new/leaving points in this frame;

 moving_point_array : the moving or new/leaving points data in this frame;

call_back_object : a pointer coming from the “SetOnReceivePointFrame”, it is an object

pointer generally;

PFuncOnReceiveGesture

 Call back funciton pointer which defines the function that you want to call when the touch gesture

coming.

Params:

 gesture : a unique id for the current frame;

typedef void (*PFuncOnReceivePointFrame)(

int frame_id,

int time_stamp,

int moving_point_count,

const TouchPoint * moving_point_array,

void * call_back_object

);

typedef void (* PFuncOnReceiveGesture)(

const TouchGesture & gesture,

void * call_back_object

);

call_back_object : a pointer coming from “SetOnReceiveGesture”, it is an object pointer

generally;

PFuncOnServerBreak

 Call back funciton pointer which defines the function that you want to call when the multi-touch

server interrupt the connection.

Params:

 param : reserved;

call_back_object : a pointer coming from “SetOnServerBreak”, it is an object pointer generally;

PFuncOnReceiveError

Call back funciton pointer which defines the function that you want to call when some error occur

during the touch data receiving process.

Params:

error_code : error_code of PQ multi-touch client, it is generally an error code of windows

socket error code, except that “PQMTE_RCV_INVALIDATE_DATA”, which

means that there the data received is invalidate, the reason may be that the

server version is not compatibal with the client version;

call_back_object : a pointer coming from “SetOnReceiveError”, it is an object pointer generally;

PFuncOnGetServerResolution

Call back funciton pointer which defines the function that you want to call when gettomg the display

resolution information of multi-touch server;

Params:

 max_x : the max pixels of x axis.

 max_y : the max pixels of y axis.

call_back_object : a pointer coming from “GetServerResolution”, it is an object pointer

generally;

PFuncOnGetDeviceInfo

typedef void (*PFuncOnServerBreak)(

void * param,

void * call_back_object

);

typedef void (*PFuncOnReceiveError)(

 int error_code,

void * call_back_object

);

typedef void (* PFuncOnGetServerResolution)(

int max_x,

int max_y,

void * call_back_object

);

 Call back funciton pointer which defines the function that you want to call when receiving the device

physical information. The device information will be sent after the client sent request or while the touch

device plugged in.

Params:

 device_info

 the physical information of the device.see TouchDeviceInfo for more details.

call_back_object : a pointer coming from “SetOnGetDeviceInfo”, it is an object pointer generally;

Sample Code

 The Sample Code here is written by C++. It is compiled in Visual Studio 2005.

Header Files

SDK_SampleCode.h

//+---

//

// PQLabs.

//

// Copyright (c) PQLabs. All rights reserved.

//

// File: SDK_SampleCode.h

//

// Contents: Sample code for MultiTouch Clinet SDK APIs.

//

// Date: 2008-12-19

//

//--

#ifndef PQ_SDK_MULTITOUCH_SAMPLE_H_

#define PQ_SDK_MULTITOUCH_SAMPLE_H_

#include "PQMTClient.h"

using namespace PQ_SDK_MultiTouch;

namespace PQ_SDK_MultiTouchSample

{

class Sample{

public:

 Sample();

typedef void (*PFuncOnGetDeviceInfo)(

const TouchDeviceInfo & device_info,

void * call_back_object

);

 ~Sample();

 // Init: the entry of sample codes;

 // demonstrate: ConnectServer, SendRequest etc;

 int Init();

private:

//////////////////////call back functions///////////////////////

 // OnReceivePointFrame: function to handle when recieve touch point frame

 // the unmoving touch point won't be sent from server. The new touch point with its pointevent

is TP_DOWN

 // and the leaving touch point with its pointevent will be always sent from server;

 static void OnReceivePointFrame(int frame_id,int time_stamp,int moving_point_count,const

TouchPoint * moving_point_array, void * call_back_object);

 // OnReceivePointFrame: function to handle when recieve touch gesture

 static void OnReceiveGesture(const TouchGesture & ges, void * call_back_object);

 // OnServerBreak: function to handle when server break(disconnect or network error)

 static void OnServerBreak(void * param, void * call_back_object);

 // OnReceiveError: function to handle when some errors occur on the process of receiving touch

datas.

 static void OnReceiveError(int err_code,void * call_back_object);

 static void OnGetServerResolution(int x, int y, void * call_back_object);

//////////////////////call back functions end ///////////////////////

 // functions to handle TouchGestures, attention the means of the params

 void InitFuncOnTG();

 // set the call back functions while reciving touch data;

 void SetFuncsOnReceiveProc();

 // OnTouchPoint: function to handle TouchPoint

 void OnTouchPoint(const TouchPoint & tp);

 // OnTouchGesture: function to handle TouchGesture

 void OnTouchGesture(const TouchGesture & tg);

 //

 //here use function pointer table to handle the different gesture type;

 typedef void (*PFuncOnTouchGesture)(const TouchGesture & tg,void * call_object);

 static void DefaultOnTG(const TouchGesture & tg,void * call_object); // just show the gesture

 static void OnTG_TouchStart(const TouchGesture & tg,void * call_object);

 static void OnTG_Down(const TouchGesture & tg,void * call_object);

 static void OnTG_Move(const TouchGesture & tg,void * call_object);

 static void OnTG_Up(const TouchGesture & tg,void * call_object);

 //

 static void OnTG_SecondDown(const TouchGesture & tg,void * call_object);

 static void OnTG_SecondUp(const TouchGesture & tg,void * call_object);

 //

 static void OnTG_SplitStart(const TouchGesture & tg,void * call_object);

 static void OnTG_SplitApart(const TouchGesture & tg,void * call_object);

 static void OnTG_SplitClose(const TouchGesture & tg,void * call_object);

 static void OnTG_SplitEnd(const TouchGesture & tg,void * call_object);

 // OnTG_TouchEnd: to clear what need to clear;

 static void OnTG_TouchEnd(const TouchGesture & tg,void * call_object);

private:

 PFuncOnTouchGesture m_pf_on_tges[TG_TOUCH_END + 1];

// sample code end

};

}; // end of namespace

#endif // end of header

Stdafx.h

// stdafx.h : include file for standard system include files,

……

#pragma comment(lib,"PQMTClient.lib")

CPP Files

Main.cpp/z_TestSDK.cpp

// z_TestSDK.cpp : Defines the entry point for the console application.

//

#include "stdafx.h"

#include "SDK_SampleCode.h"

#include <iostream>

using namespace std;

using namespace PQ_SDK_MultiTouchSample;

int _tmain(int argc, _TCHAR* argv[])

{

 Sample sample;

 int err_code = sample.Init();

 if(err_code != PQ_MT_SUCESS){

 cout << "press any key to exit..." << endl;

 getchar();

 return 0;

 }

 // do other things of your application;

 cout << "hello world" << endl;

 //

 // here just wait here, not let the process exit;

 // here just wait here, not let the process exit;

 char ch = 0;

 while(ch != 'q' && ch != 'Q'){

SDK_SampleCode.cpp

//+---

//

// PQLabs.

//

// Copyright (c) PQLabs. All rights reserved.

//

// File: SDK_SampleCode.cpp

//

// Contents: Implementation of SDK_SampleCode.h

//

// Date: 2008-12-19

//

//--

#include "stdafx.h"

#include "SDK_SampleCode.h"

#include <iostream>

#include <set>

#include <map>

#include <cassert>

#include <functional>

using namespace std;

namespace PQ_SDK_MultiTouchSample

{

Sample::Sample()

{

 memset(m_pf_on_tges,0, sizeof(m_pf_on_tges));

}

Sample::~Sample()

{

 DisconnectServer();

}

/////////////////////////// functions ///////////////////////////////////

 cout << "press \'q\' to exit" << endl;

 ch = getchar();

 }

 return 0;

}

int Sample::Init()

{

 int err_code = PQ_MT_SUCESS;

 // initialize the handle functions of gestures;

 InitFuncOnTG();

 // set the functions on server callback

 SetFuncsOnReceiveProc();

 // connect server

 cout << " connect to server..." << endl;

 if((err_code = ConnectServer()) != PQ_MT_SUCESS){

 cout << " connect server fail, socket error code:" << err_code << endl;

 return err_code;

 }

 // send request to server

 cout << " connect success, send request." << endl;

 TouchClientRequest tcq = {0};

 tcq.type = RQST_RAWDATA_ALL | RQST_GESTURE_ALL;

 if((err_code = SendRequest(tcq)) != PQ_MT_SUCESS){

 cout << " send request fail, err_code:" << err_code << endl;

 return err_code;

 }

 //////////////you can set the move_threshold when the tcq.type is RQST_RAWDATA_INSIDE;

 //send threshold

 //int move_threshold = 1;// 1 pixel

 //if((err_code = SendThreshold(move_threshold) != PQMTE_SUCESS){

 // cout << " send threadhold fail, error code:" << err_code << endl;

 // return err_code;

 //}

 //

 ////////////////////////

 //get server resolution

 if((err_code = GetServerResolution(OnGetServerResolution, NULL)) != PQ_MT_SUCESS){

 cout << " get server resolution fail" << endl;

 return err_code;

 };

 // start receiving

 cout << " send request success, start recv." << endl;

 return err_code;

}

void Sample:: InitFuncOnTG()

{

 // initialize the call back functions of toucha gestures;

 m_pf_on_tges[TG_TOUCH_START] = &Sample::OnTG_TouchStart;

 m_pf_on_tges[TG_DOWN] = &Sample::OnTG_Down;

 m_pf_on_tges[TG_MOVE] = &Sample::OnTG_Move;

 m_pf_on_tges[TG_UP] = &Sample::OnTG_Up;

 m_pf_on_tges[TG_SECOND_DOWN] = &Sample::OnTG_SecondDown;

 m_pf_on_tges[TG_SECOND_UP] = &Sample::OnTG_SecondUp;

 m_pf_on_tges[TG_SPLIT_START] = &Sample::OnTG_SplitStart;

 m_pf_on_tges[TG_SPLIT_APART] = &Sample::OnTG_SplitApart;

 m_pf_on_tges[TG_SPLIT_CLOSE] = &Sample::OnTG_SplitClose;

 m_pf_on_tges[TG_SPLIT_END] = &Sample::OnTG_SplitEnd;

 m_pf_on_tges[TG_TOUCH_END] = &Sample::OnTG_TouchEnd;

}

void Sample::SetFuncsOnReceiveProc()

{

 PFuncOnReceivePointFrame old_rf_func =

SetOnReceivePointFrame(&Sample::OnReceivePointFrame,this);

 PFuncOnReceiveGesture old_rg_func =

SetOnReceiveGesture(&Sample::OnReceiveGesture,this);

 PFuncOnServerBreak old_svr_break = SetOnServerBreak(&Sample::OnServerBreak,NULL);

 PFuncOnReceiveError old_rcv_err_func =

SetOnReceiveError(&Sample::OnReceiveError,NULL);

}

void Sample:: OnReceivePointFrame(int frame_id, int time_stamp, int moving_point_count, const

TouchPoint * moving_point_array, void * call_back_object)

{

 Sample * sample = static_cast<Sample*>(call_back_object);

 assert(sample != NULL);

 const char * tp_event[] =

 {

 "down",

 "move",

 "up",

 };

 cout << " frame_id:" << frame_id << " time:" << time_stamp << " ms" << " moving point count:"

<< moving_point_count << endl;

 for(int i = 0; i < moving_point_count; ++ i){

 TouchPoint tp = moving_point_array[i];

 sample->OnTouchPoint(tp);

 }

}

void Sample:: OnReceiveGesture(const TouchGesture & ges, void * call_back_object)

{

 Sample * sample = static_cast<Sample*>(call_back_object);

 assert(sample != NULL);

 sample->OnTouchGesture(ges);

}

void Sample:: OnServerBreak(void * param, void * call_back_object)

{

 // when the server break, disconenct server;

 cout << "server break, disconnect here" << endl;

 DisconnectServer();

}

void Sample::OnReceiveError(int err_code, void * call_back_object)

{

 switch(err_code)

 {

 case PQMTE_RCV_INVALIDATE_DATA:

 cout << " error: receive invalidate data." << endl;

 break;

 case PQMTE_SERVER_VERSION_OLD:

 cout << " error: the multi-touch server is old for this client, please update the multi-touch

server." << endl;

 break;

 default:

 cout << " socket error, socket error code:" << err_code << endl;

 }

}

void Sample:: OnGetServerResolution(int x, int y, void * call_back_object)

{

 cout << " server resolution:" << x << "," << y << endl;

}

// here, just record the position of point,

// you can do mouse map like "OnTG_Down" etc;

void Sample:: OnTouchPoint(const TouchPoint & tp)

{

 switch(tp.point_event)

 {

 case TP_DOWN:

 cout << " point " << tp.id << " come at (" << tp.x << "," << tp.y

 << ") width:" << tp.dx << " height:" << tp.dy << endl;

 break;

 case TP_MOVE:

 cout << " point " << tp.id << " move at (" << tp.x << "," << tp.y

 << ") width:" << tp.dx << " height:" << tp.dy << endl;

 break;

 case TP_UP:

 cout << " point " << tp.id << " leave at (" << tp.x << "," << tp.y

 << ") width:" << tp.dx << " height:" << tp.dy << endl;

 break;

 }

}

void Sample:: OnTouchGesture(const TouchGesture & tg)

{

 if(TG_NO_ACTION == tg.type)

 return ;

 assert(tg.type <= TG_TOUCH_END);

 DefaultOnTG(tg,this);

 PFuncOnTouchGesture pf = m_pf_on_tges[tg.type];

 if(NULL != pf){

 pf(tg,this);

 }

}

void Sample:: OnTG_TouchStart(const TouchGesture & tg,void * call_object)

{

 assert(tg.type == TG_TOUCH_START);

 cout << " here, the touch start, initialize something." << endl;

}

void Sample:: DefaultOnTG(const TouchGesture & tg,void * call_object) // just show the gesture

{

 cout <<"ges,name:"<< GetGestureName(tg) << " type:" << tg.type << ",param size:" <<

tg.param_size << " ";

 for(int i = 0; i < tg.param_size; ++ i)

 cout << tg.params[i] << " ";

 cout << endl;

}

void Sample:: OnTG_Down(const TouchGesture & tg,void * call_object)

{

 assert(tg.type == TG_DOWN && tg.param_size >= 2);

 cout << " the single finger touching at :("

 << tg.params[0] << "," << tg.params[1] << ")" << endl;

}

void Sample:: OnTG_Move(const TouchGesture & tg,void * call_object)

{

 assert(tg.type == TG_MOVE && tg.param_size >= 2);

 cout << " the single finger moving on the screen at :("

 << tg.params[0] << "," << tg.params[1] << ")" << endl;

}

void Sample:: OnTG_Up(const TouchGesture & tg,void * call_object)

{

 assert(tg.type == TG_UP && tg.param_size >= 2);

 cout << " the single finger is leaving the screen at :("

 << tg.params[0] << "," << tg.params[1] << ")" << endl;

}

//

void Sample:: OnTG_SecondDown(const TouchGesture & tg,void * call_object)

{

 assert(tg.type == TG_SECOND_DOWN && tg.param_size >= 4);

 cout << " the second finger touching at :("

 << tg.params[0] << "," << tg.params[1] << "),"

 << " after the first finger touched at :("

 << tg.params[2] << "," << tg.params[3] << ")" << endl;

}

void Sample:: OnTG_SecondUp(const TouchGesture & tg,void * call_object)

{

 assert(tg.type == TG_SECOND_UP && tg.param_size >= 4);

 cout << " the second finger is leaving at :("

 << tg.params[0] << "," << tg.params[1] << "),"

 << " while the first finger still anchored around :("

 << tg.params[2] << "," << tg.params[3] << ")" << endl;

}

//

void Sample:: OnTG_SplitStart(const TouchGesture & tg,void * call_object)

{

 assert(tg.type == TG_SPLIT_START && tg.param_size >= 4);

 cout << " the two fingers is splitting with one finger at: ("

 << tg.params[0] << "," << tg.params[1] << "),"

 << " , the other at :("

 << tg.params[2] << "," << tg.params[3] << ")" << endl;

}

void Sample:: OnTG_SplitApart(const TouchGesture & tg,void * call_object)

{

 assert(tg.type == TG_SPLIT_APART && tg.param_size >= 1);

 cout << " the two fingers is splitting apart with there distance incresed by "

 << tg.params[0]

 << " with a ratio :" << tg.params[1]

 << endl;

}

void Sample:: OnTG_SplitClose(const TouchGesture & tg,void * call_object)

{

 assert(tg.type == TG_SPLIT_CLOSE && tg.param_size >= 1);

 cout << " the two fingers is splitting close with there distance decresed by "

 << tg.params[0]

 << " with a ratio :" << tg.params[1]

 << endl;

}

void Sample:: OnTG_SplitEnd(const TouchGesture & tg,void * call_object)

{

 assert(tg.type == TG_SPLIT_END);

 cout << " the two splitting fingers with one finger at: ("

 << tg.params[0] << "," << tg.params[1] << "),"

 << " , the other at :("

 << tg.params[2] << "," << tg.params[3] << ")"

 << " will end" << endl;

}

// OnTG_TouchEnd: to clear what need to clear

void Sample:: OnTG_TouchEnd(const TouchGesture & tg,void * call_object)

{

 assert(tg.type == TG_TOUCH_END);

 cout << " all the fingers is leaving and there is no fingers on the screen." << endl;

}

/////////////////////////// functions ///////////////////////////////////

}

	Revisions
	Contents
	Flow Sheet
	Functions
	ConnectServer
	DisconnectServer
	SendRequest
	SendThreshold
	SetOnReceivePointFrame
	SetOnReceiveGesture
	SetOnServerBreak
	SetOnReceiveError
	SetRawDataResolution
	SetOnGetDeviceInfo
	GetServerResolution
	GetGestureName

	Struct Definitions
	TouchPoint
	TouchGesture
	TouchClientRequest
	TouchDeviceInfo

	Macro Definitions
	Error Type
	TouchPoint Event Type
	TouchGesture Type
	Client Request Type
	Function Pointers

	Sample Code
	Header Files
	CPP Files

