

HD^2 API Quick Start Guide

HD^2 API Quick Start Guide

1. Introduction

This document is prepared to serve as a quick start guide to get the Quanser HD^2 Haptic
Device up and running. It is assumed that you have already read the HD^2 Device User
Manual that provides detailed explanation on hardware components, wiring, and
specifications of the device.

The following is a listing and a brief description of the supplied controllers, API and test
software that can be used to get the device up and running. Detailed discussion on each of
these components as well as possible applications of the supplied API's is given in the next
section.

● Driver (File Name: HD2_Driver): This file is saved on the following location in
the customized PC that was shipped with the device:

C:\Quanser\Imperial\Release\Driver

This is an executable file generated using Quanser's QuaRC software and contains
the interface between the PC and the external hardware via the Q8 data acquisition
board that is installed in the PC. This allows real-time communication with the
device's sensing and actuating elements. Using the Quanser Stream API this data
can be monitored and manipulated in user developed applications (C, C++, C#, etc)
providing complete control over the device. It seamlessly connects to the device via
the DAQ and starts real-time communication between the PC and the external
hardware (HD^2 Device). At this point user developed applications (such as the
supplied API's which will be discussed below) can connect to this driver, and use its
real-time data to perform any desired task such as position control, force control or
torque control on the HD^2 Device.

● End User Test (File Name: force_position_test_application.exe): This file is saved
on the following location in the customized PC that was shipped with the device:

C:\Quanser\Imperial\Release\End User Test

This application can be used as a quick test utility to make sure the HD^2 Device is
operating normally. It also serves as an example of how applications written in C,
C++ or C# can communicate with the “Driver” that was mentioned above to access
the device's sensing and actuating elements. This application provides a graphical
user interface in which you can monitor the HD^2 Device's end-effector position
and the status of the supplied foot pedal. You can also enable/disable the amplifiers,
calibrate the device, and apply forces and torques in different freedom degrees using
this interface.

  Page: 1

HD^2 API Quick Start Guide
● API Examples (File Name: API_Examples.sln): This Microsoft Visual Studio

solution file is saved on the following location in the customized PC that was
shipped with the device:

C:\Quanser\Imperial\Release\API Examples

This solution contains examples of programs written in C++ that again use the
above-mentioned driver as well as the Quanser Stream API to access the
sensing and actuating elements of the HD^2 Device as well as all of its Digital
I/O/. These examples can be thought of as a starting point for developing your
own customized applications depending on your specific needs. Examples
currently included in this solution include a calibration API that can be used to
calibrate the HD^2 Device as well as a force/position control API.

2. File/Project Explanations

2.1. Driver
As mentioned earlier, this file seamlessly starts a real-time communication channel between
the PC and the HD^2 Device. You can run the file by simply double-clicking on it. This
allows custom developed applications to access the data available from this driver that
includes encoder measurements, digital channels status, scissor angles, etc. The driver also
accepts commands from custom applications which in turn are applied to the device. The
data currently available to be received from the driver is a 22 element vector of doubles
with the following structure:

● [0:2] :end-effector x, y and z task space position in SI units.
● [3:4] :end-effector roll, pitch task space orientations in SI units.
● [5:6] :left and right pedal status of the supplied foot-pedal (1: pressed)
● [7:11] :end-effector x, y, z, roll, and pitch velocities in SI units.
● [12] :time elapsed since the driver was started in seconds.
● [13] :safety flag showing one of freedom degrees is vibrating with

 frequency higher than the allowed threshold.
● [14] :safety flag showing that one of the freedom degrees has acquired a

 velocity higher than the allowed threshold.
● [15:20] :current measured at each motor in Amps.
● [21] :end-effector rotation about its own axis in radians (yaw)

  Page: 2

HD^2 API Quick Start Guide

The data currently accepted by the driver is a 17 element vector of doubles with the
following structure:

● [0:2] :force to be applied to the end-effector in x, y and z DOF's in SI
 units.

● [3:4] :torque to be applied to the end-effector in roll, pitch DOF's
 in SI units.

● [5] :control mode (0: force control, 1: position control)
● [6] :emergency stop flag. Raising this signal from 0 to 1 stops the driver.
● [7:11] :position control stiffness for the 5 freedom degrees in N/m for x, y

 and z and N.m/rad for roll and pitch.
● [12] :safety enable flag with default value of 1. When this value is 0 if a

safety flag is raised, the driver will continue running. When the
value is set to 1 if a safety flag raises the driver will stop
automatically.

● [13] :vibration safety threshold. This sets the number of vibrations the
device is allowed to have in each of its freedom degrees in 1.9
seconds before the vibration safety flag is raised. The default is 40.

● [14:15] :amp enable signal. [1 0] enables the amps while any other
configuration keeps them disabled.

● [16] :calibration flag. Raising this flag will reset the encoder counts on the
 Q8 DAQ.

The vibration detection safety feature monitors the number of sign changes in the velocity
of each freedom degree in periods of 1.9 seconds and then resets. There is a threshold that
the user can set that corresponds to the number of vibrations allowed before the safety flag
is raised (element 13 in driver input list). By default this value is 40 for the HD^2 device
meaning if in 1.9 seconds the device vibrates back and forth in any direction more than 40
times, the vibration flag is raised and the driver will be stopped if safety is enabled by
element 12 in the driver input list.

The high velocity detection feature monitors the velocity of each freedom degree. The high
velocity vibration flag is raised in any of the following conditions:

• The device end-effector acquires a velocity of 1 m/s or more for 0.08 seconds or
more in x, y or z directions.

• The device end-effector acquires a velocity of 1.5 rad/s or more for 0.2 seconds or
more in the roll or pitch directions.

If the safety enable flag (element 12 in the driver input list) is set to 1, the driver will stop
automatically if the high velocity flag is raised.

  Page: 3

HD^2 API Quick Start Guide

2.2. End User Test (force_test_application.exe)
This project implements a C# application that uses the Quanser Stream API to connect to
the driver. The application can issue forces to be applied to each DOF of the HD^2 Device.
You can also command the device to hold its current position in space using this
application.
The program also receives and displays the current position and orientation of the
end-effector. In addition the status of each of the pedals of the supplied foot-pedal is shown.
You can enable and disable the amplifier using the respective buttons. You can also
calibrate the HD^2 Device using this application. All these properties make this application
a quick test tool to make sure that the device is operating normally. It is assumed that the
HD^2 Device is wired to the PC as instructed in the user manual when running this
program. The vibration threshold value can also be changed from this utility in addition to
being able to completely disable the safety feature by un-checking the corresponding box.
In order to calibrate the device, place the end-effector in the calibration jig and click on the
Calibrate button. Remember to always calibrate the device at the beginning of use to ensure
that encoder readings you start with are reset. You can click on the Emergency Stop button
to stop the driver and halt the communication with the external hardware if the device is not
acting normally. The supplied external emergency stop can also be used in these situations
to disable the amplifiers.

It is highly recommended to always hold the end-effector with one hand when
applying forces and torques to the device to avoid possible damage as a result of
sudden movements.

Remember that the driver must be running prior to starting this application.

2.3. Example API's (API Examples.sln)
This solution contains C++ based applications that can be used as examples of how the
Stream API can be used to communicate with the driver and hence with the HD^2 Device.
Currently there is a Calibration project included in this solution that can be used to reset the
encoders of the HD^2 Device. Note that the driver must be running prior to running the
examples included in this solution. Simply run this program from Visual Studio. A console
will open that asks you to place the end-effector in the calibration jig and press Enter. Once
you do this, a message will be shown saying that the device has been calibrated
successfully.

This application communicates the same set of data that was mentioned in section 2.1 with
the driver. For this specific application which is only used to calibrate the device, the
calibration flag is simply set to 1 in the code and sent to the driver. In more advance

  Page: 4

HD^2 API Quick Start Guide
applications such as position control API's other elements of vectors described in section
2.1 are also used. This can be seen in the other supplied project (position_control) where
the same set of data are communicated and parsed with the driver. By setting control mode
to 1, the system goes into position control mode and holds its position in space upon
application start.

  Page: 5

	1. Introduction
	2. File/Project Explanations
	2.1. Driver
	2.2. End User Test (force_test_application.exe)
	2.3. Example API's (API Examples.sln)

